Approximate sparse spectral clustering based on local information maintenance for hyperspectral image classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Hierarchical Sparse Spectral Clustering For Image Set Classification

We present a structural matching technique for robust classification based on image sets. In set based classification, a probe set is matched with a number of gallery sets and assigned the label of the most similar set. We represent each image set by a sparse dictionary and compute a similarity matrix by matching all the dictionary atoms of the gallery and probe sets. The similarity matrix comp...

متن کامل

Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification †

Recently, superpixel segmentation has been proven to be a powerful tool for hyperspectral image (HSI) classification. Nonetheless, the selection of the optimal superpixel size is a nontrivial task. In addition, compared with single-scale superpixel segmentation, the same image segmented on a different scale can obtain different structure information. To overcome such a drawback also utilizing t...

متن کامل

Hyperspectral Image Classification Based on Nonlinear Spectral-Spatial Network

Recently, for the task of hyperspectral images classification, deep learning-based methods have revealed promising performance. However, the complex network structure and time-consuming training process have restricted their applications. In this letter, we construct a much simpler network, nonlinear spectral-spatial network (NSSNet), for hyperspectral images classification. NSSNet is developed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS ONE

سال: 2018

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0202161